10 years challenge

$$
\frac{y_{2}-y_{1}}{x_{2}-x_{1}}
$$

Always label your axes
 Straight Line Graphs Me : Hey, can you scratch my back? My hand : Okay which part of your back do you want me to scratch?

PLOTTING COORDINATES

My brain : Scratch in $(2,9)$ part. ;)

Table Of Contents

What Is The X And Y Axis? Slide 6
What Are Coordinates? Slide 8
What Does Gradient/Slope Mean? Slide 11
Gradient/Slope Explained In More Detail. Slide 14
How Do We Calculate The Gradient/Slope? Slide 18
Way 1 : From a graph = builld a triangle. Slide 19
Way 2: From a graplh = pick any two points on a line Slide 24
Way 3 : From a table of values Slide 29
Way 4: From two coordinates. Slide 31
Way 5 : From the equation of a line. Slide 33
What Is The Y Intercept And How Do We Calculate lit? Slide 35
Way 1: From a graph Slide 36
Way 2: From an equation Slide 39
How Do We Graph An Equation Of A Line? Slide 41
Way 1: Build a talble of values Slide 42
Way 2: Start with the y intercept and move by the gradient Slide 46
Way 3: Find two coordinates, plot and connect "the dots" Slide 51
What Are Parallel And Perpendicular Lines? Slide 54
How Do We Find The Equation Of A Line? Slide 56
How Do We Find The X and Y Intercepts From An Equation In Any Form? Slide 60
How Do We Find Midpoints? Slide 62
How Do We Find Distances? Slide 64
Harder Examples Of Each Type Slide 67
How Do We Find Where Two Lines Intersect? Slide 77
If Given Graplin. Slide 76
Uf Given Equations. Slide 78
Areas Slide 82
Area Hack Slide 85

What is The X and Y

What is the x axis and what is the y axis?

$$
\begin{gathered}
\text { The } x \text {-axis } \\
\text { and } y \text {-axis } \\
\text { trick: }
\end{gathered}
$$

-

You must not know 'bout me
You must not know 'bout me
I can have another you by tomorrow

So don't you ever for a second get to thinking
You're irreplaceable"

What Are

coordinates?

Animal Style Coordinates

Mario Style Coordinates

"I must run first before I pounce and jump on my target"

Yoshi Style Coordinates

Ready To Start
(1)
 then..
(2)

or

and the process starts again

$$
(x, y)
$$

(x, y)

What Does Gradient/Slope Mean?

You need to remember that Slope Dude
always skis towards the right or eastward

> | As he finishes the flat |
| :--- |
| part, he doesn't see well |
| ahead and all of a sudden |
| he comes to the edge of a |
| cliff. It's straight down. |

"This is zero fun"

He is so frightened that he says the worst curse word possible in math: "undefined"
© mymathscloud

Gradient/Slope

 Explained In More Detail
The slope/gradient is measure of how steep a line is

 The slope/gradient also tells us about the direction of a line

Understanding slope means understanding two things: steepness and direction

Let's use a skater to demonstrate this.

The slope of the line on the left above is steeper than the slope of the line on the right.
In addition, the skaters are going down the ramp from the left to the right. This means the slope decreasing, or negative.

How about if the skaters were going up the ramp? This would mean that the slope is Increasing, or positive.

So, slope measures the direction of the line - whether or not the skater is going up the ramp (positive slope) or going down the ramp (negative slope). It also measures the steepness of a line - the steeper the ramp the larger the value will be for the slope

A skater doesn't always skate on an incline though. A skater could also skate on flat ground, which would mean that there is no steepness to the line and therefore it would be defined as zero slope. Or what about if the skater was a show-off and wanted to go straight down the side of a building or ramp? This is known as an

We will see how to find the numbers for the slope over the next few pages undefined slope.

Let's look at our four different types of lines in a bit more detail

start here
slope $=\frac{\text { how much } \uparrow}{\text { how much } \rightarrow}=\frac{\text { rise }}{\text { run }}$
(the slope is positive since it increases from LEFT to RIGHT)
start here

Important: This rise will be a negative answer, since it is a negative rise i.e. a fall)
end here

$$
\text { slope }=\frac{\text { how much } \downarrow}{\text { how much } \rightarrow}=\frac{\text { rise }}{\text { run }}
$$

(the slope is negative since it decreases from LEFT to RIGHT)

© mymathscloud

How Do We Calculate The Gradient/Slope?

$$
\begin{gathered}
\text { Way 1: } \\
\text { Fron A Graph- } \\
\text { Build } \mathbb{A} \text { Triongle }
\end{gathered}
$$

Calculating the value of the slope/gradient

As mentioned, we can build any triangle to find the slope/gradient. It doesn't matter where we form it above or below the line. We use the letter m to represent slope. Carrying on from example 1 above:

The formula for slope is slope $=m=\frac{\text { rise }}{r u n}$

Notice how all give the same answer for the slope which is 2 . Some just need to be simplified in order to see that they give the same value!

$$
\text { slope }=m=2
$$

Calculating the value of the slope/gradient

$$
\text { slope }=\mathrm{m}=\frac{\text { rise }}{\text { run }}
$$

Note: our rise is negative since we fall this time (negative rise)

$$
\text { Using the blue triangle }: \mathbf{m}=\frac{r i s e}{r u n}=\frac{-2}{6}=-\frac{1}{3}
$$

Using the orange triangle

$$
\begin{aligned}
& : \mathrm{m}=\frac{\text { rise }}{\text { run }}=\frac{-1}{3} \\
& : \mathbf{m}=\frac{\text { rise }}{\text { run }}=\frac{-3}{9}=-\frac{1}{3}
\end{aligned}
$$

Using the green triangle

Using the purple triangle

$$
: \mathbf{m}=\frac{\text { rise }}{\text { run }}=\frac{-\mathbf{1}}{3}
$$

$$
\text { slope }=m=-\frac{1}{3}
$$

Way 2: From A Graph. Pick Any Two Points On A Line

Let's first learn what the formula for the slope is when we have two points. Let's generally call the points $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$

Method:

This formula basically says:
we subtract the y coordinates and divide by the answer we get by subtracting the x coordinates

$$
\frac{y_{2}-y_{1}}{x_{2}-x_{1}} \text { or } \frac{y_{2}-y_{1}}{x_{1}-x_{2}}
$$

The formula should make sense because

$$
\frac{\text { rise }}{\text { run }}=\frac{\uparrow}{\hookrightarrow} \text { which is just } \frac{\text { change in } y}{\text { change in } x}
$$

Why are there 2 ways? It doesn't matter which way round we subtract, as long as we stay consistent!
So, for our graph for example 3 on the previous page, we had the following coordinates

- $(5,8)$
- $(4,6)$
$(3,4)$
$(2,2)$
$(0,-2)$
($-1,-4$)
($-2,-6$)

Pick ANY pair of coordinates. Let's choose $(5,8)$ and $(0,-2)$

$$
\begin{aligned}
& \begin{array}{c}
\underline{\text { Way 1 }} \\
m=\frac{8--2}{5-0}=\frac{8+2}{5}=2
\end{array} \\
& \begin{array}{c}
\text { Way 2 } \\
m=\frac{-2-8}{0-5}=\frac{-10}{-5}=2
\end{array} \\
& \text { slope }=m=2
\end{aligned}
$$

Note: picking any two coordinates would have still given us the same answer

Recall the slope formula:

So, for our graph for example 4 on the previous page, we had the coordinates

$$
(-9,7) \bullet(-6,6) \bigcirc(-3,5) \quad(0,4) \quad(3,3) \quad(6,2) \quad(9,1) \quad(12,0)
$$

Pick ANY pair of coordinates. Let's choose $(-3,5)$ and $(3,3)$

$$
\begin{array}{r}
\begin{array}{c}
\text { Way 1 } \\
m=\frac{5-3}{-3-3}=\frac{2}{-6}=-\frac{1}{3} \\
\text { slope }=\mathrm{m}=-\frac{1}{3}
\end{array}, \begin{array}{c}
\frac{3-5}{3--3}=\frac{-2}{6}=-\frac{1}{3} \\
\hline
\end{array}
\end{array}
$$

Way 3: From A Table of Values

When given a table of values, we could just plot all the points, form the line and then use the previous methods learnt such as building triangles or picking two points on the line, but we don't have to! There is a quicker way when we're given table of values!

\boldsymbol{x}	$-\mathbf{3}$	$-\mathbf{2}$	$\mathbf{- 1}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$
y	-11	-8	-5	-2	1	4	7

The slope is just the constant number that y is changing by. Here we keep adding 3 , so the slope is 3

$$
\text { slope }=m=3
$$

Note: This only works because the x values are changing by one each time in the table. If the table only consisted of even values for x say $-2,0,24$ or only odd values say $-3,-1,1,3$ then we would get twice the slope.

Sometimes we'll be a given a table and sometimes we'll need to build it. We will see how to build a table later on in the how to graph a line section.

Way 4: From Two Coordinates

We have already seen how to do this when we dealt with choosing two coordinates on the line! Here we are just already given the coordinates for free and don't have to pick them off the graph!

Remember, it doesn't matter which way round we subtract, as long as we stay consistent (hence we have 2 ways)
For example: Find slope of the line passing through the points $(-1,2)$ and $(4,-5)$

$$
\frac{2--5}{-1-4}=\frac{7}{-5}=-\frac{7}{5} \quad \text { or } \quad \frac{-5-2}{4--1}=\frac{-7}{5}=-\frac{7}{5}
$$

Way 5:
 Fron The Equation Off Aline

The equation of a line looks like $y=m x+c$
© mymathscloud
There are 2 values that are important: m and c. We have already seen that m represents the slope
Note: We will see
what the c value
means in a bit

Let's look at some examples

$y=x-2$	$y=2 x-1$	$y=-x+4$	$y=-2+3 x$	$y=2-4 x$	$x=4$	$y=5$
$\begin{gathered} y=x+2 \\ \text { means } \\ y=1 x+2 \\ \text { gradient }=1 \end{gathered}$	gradient $=2$	$\begin{gathered} y=x+2 \\ \text { means } \\ y=-1 x+4 \\ \text { gradient }=-1 \end{gathered}$	Need to re-order this first $\begin{aligned} & y=3 x-2 \\ & \text { gradient }=3 \end{aligned}$	Need to re-order this first $\begin{aligned} & y=-4 x+2 \\ & \text { gradient }=-4 \end{aligned}$	This is a vertical line since x is the same value the whole time. The gradient here is undefined	This is a horizontal line since y is the same value the whole time. $\begin{gathered} y=5 \text { is like writing } \\ y=0 x+5 \\ \text { gradient }=0 \end{gathered}$
$y+x=4$	$y-2 x=5$	$2 x+4 y=5$	$5 x-2 y=7$	$2 x+3 y-1=0$	$x+2 y+5=0$	
We need to use algebra to re-arrange to make y the subject $y=-x+4$ $\text { gradient }=-1$	We need to use algebra to re-arrange to make y the subject $\begin{gathered} y=2 x+5 \\ \text { gradient }=2 \end{gathered}$	We need to use algebra to re-arrange to make y the subject $\begin{aligned} & 4 y=-2 x+5 \\ & y=\frac{-2 x+5}{4} \\ & y=-\frac{1}{2}+\frac{5}{4} \\ & \text { gradient }=-\frac{1}{2} \end{aligned}$	We need to use algebra to rearrange to make y the subject $\begin{gathered} -2 y=-5 x+7 \\ y=\frac{-5 x+7}{-2} \\ y=\frac{5}{2} x-\frac{7}{2} \\ \text { gradient }=\frac{5}{2} \end{gathered}$	We need to use algebra to re-arrange to make y the subject $\begin{aligned} & 3 y=-2 x+1 \\ & y=\frac{-2 x+1}{3} \\ & y=-\frac{2}{3} x+\frac{1}{3} \\ & \text { gradient }=-\frac{2}{3} \end{aligned}$	We need to use algebra to re-arrange to make y the subject $\begin{aligned} & 2 y=-x-5 \\ & y=\frac{-x-5}{2} \\ & y=-\frac{1}{2} x-\frac{5}{2} \\ & \text { gradient }=-\frac{1}{2} \end{aligned}$	34

$$
\begin{gathered}
\text { What Is The Y } \\
\text { Untercept And How } \\
\text { Do We Find It? }
\end{gathered}
$$

Way 1:
 Fron A Graph

Way 2:

From An Equation

The equation of a line looks like $y=m x+c$

The y intercept is represents by the letter c

Let's look at some examples

ข) C The y intercept is this value here. We use the letter c to
represent the y intercept.

Note: some courses use the letter binstead of c to represent the slope

$y=2 x-1$	$y=-x+4$	$y=-2+3 x$	$y=2-4 x$	$x=4$	$y=5$
$\begin{aligned} & y \text { intercept is }-1 \\ & (0,-1) \end{aligned}$	y intercept is 4 $(0,4)$	Need to re-order this first $\begin{gathered} y=3 x-2 \\ y \text { intercept is }-2 \\ (0,-2) \end{gathered}$	Need to re-order this first $y=-4 x+2$ y intercept is 2 $(0,2)$	This is a vertical line since x is the same value the whole time. There is no y intercept	This is a horizontal line since y is the same value the whole time. $y=5$ is like writing $y=0 x+5$ y intercept is 5 $(0,5)$
$y+x=4$	$y-2 x=5$	$2 x+4 y=5$	$5 x-2 y=7$	$2 x+3 y-1=0$	$x+2 y+5=0$
We need to use algebra to re-arrange $y=-x+4$ y intercept is 4 $(0,4)$	We need to use algebra to re-arrange $y=2 x+5$ y intercept is 5 $(0,5)$	We need to use algebra to re-arrange $\begin{aligned} & 4 y=-2 x+5 \\ & y=\frac{-2 x+5}{4} \\ & y=-\frac{1}{2}+\frac{5}{4} \end{aligned}$ y intercept is $\left(0, \frac{5}{4}\right)$	We need to use algebra to rearrange $\begin{gathered} -2 y=-5 x+7 \\ y=\frac{-5 x+7}{-2} \\ y=\frac{5}{2} x-\frac{7}{2} \end{gathered}$ y intercept is $\left(0,-\frac{7}{2}\right)$	We need to use algebra to rearrange $\begin{aligned} & 3 y=-2 x+1 \\ & y=\frac{-2 x+1}{3} \\ & y=-\frac{2}{3} x+\frac{1}{3} \end{aligned}$ y intercept is $\left(0, \frac{1}{3}\right)$	We need to use algebra to re-arrange $\begin{aligned} & 2 y=-x-5 \\ & y=\frac{-x-5}{2} \\ & y=-\frac{1}{2} x-\frac{5}{2} \end{aligned}$ y intercept is $\left(0,-\frac{5}{2}\right)$

How Do We Graph An Equation Of \mathbb{A}
 Line?

Way 1:
 Build \mathbb{A} Table off
 Values

Pick x values, let's say -3 to 3 (you are normally given the table with x values already chosen, but if not choose your own and draw out the following table)

\mathbf{x}	-3	-2	-1	0	1	2	3
\mathbf{y}							

Plug in the x values into the equation $y=2 x-1$ in order find the y values (replace every x value in the equation)

\mathbf{x}	-3	-2	-1	0	1	2	3
\mathbf{y}	$2(-3)-1$	$2(-2)-1$	$2(-1)-1$	$2(0)-1$	$2(1)-1$	$2(2)-1$	$2(3)-1$

Simplify each y

\mathbf{x}	-3	-2	-1	0	1	2	3
\mathbf{y}	-7	-5	-3	-1	1	3	5

Let's colour code each coordinate

\mathbf{x}		-2	-1	0	1	2	3
\mathbf{y}	-7	-5	-3	-1	1	3	

Plot each pair of points (each colour pair). We will do this on the next page
$(-3,-7)$
$(-2,-5)$
$(-1,-3)$
$(0,-1)$
$(1,1)$
$(2,3)$
$(3,5)$

Note: Harder questions don't always give the line in the form $y=m x+c$. We need to use algebra to make y the subject in order to get into the form $y=m x+c$ first before building the table of values.

$$
\begin{gathered}
\text { Start with the y } \\
\text { intercept and move } \\
\text { by the gradient }
\end{gathered}
$$

Before we start, the following can help to remember what we are about to learn :

Method:

Step 2: Start (commence) FROM the y intercept plotted and use the gradient $\frac{\text { rise }}{\text { run }}$ to plot a few more points. Here we have gradient 2 which means $\frac{2}{1}$. We always do the rise first (we never go horizontally first). So, we go 2 up and then 1 to the right for a few points.

Note: If the gradient was negative, then we would have gone DOWN 2 and 1 to the right (a negative gradient is just a rise in a negative direction).
Remember though, we always go to the right, even if the gradient is negative!

Way 3:

Find two coordinates,

plot then and

"connect the dots"

A line is defined by two points. If we have two points, then we can connect the points just like "connecting the dots" and create the line. What points should be pick? Zero is a really easy number isn't it, so let's try $x=0$ and $y=0$.
For example, graph the line $y=2 x-6$

Let $x=0$

$x=0$ means we replace x with 0 in the equation $y=2 x-6$

$$
y=2(0)-6
$$

We now need to solve for y. This is easy since y is already on its own

$$
\begin{gathered}
y=0-6 \\
y=-6
\end{gathered}
$$

So, we have the point $(0,-6)$

Let $\mathrm{y}=0$

$y=0$ means we replace y with 0 in the equation $y=2 x-6$

$$
0=2 x-6
$$

We now need to solve for x. This time we need to re-arrange to find x using algebra as it is not already on its own

$$
\begin{gathered}
2 x=6 \\
x=3
\end{gathered}
$$

So, we have the point $(3,0)$
$(0,-6)$ and $(3,0)$ give us two points that define the line. To graph the line, let's now plots the 2 points and conne ${ }^{5}$ them.

What Are Parallel

And Perpendicular
Lines?

Parallel lines the lines have the same gradient. They never meet

For example, if one line has a slope of 2 then a parallel line will also have a slope of 2.

Perpendicular lines meet at right angles. This means the slopes multiply to make -1 or they are negative reciprocals of each other. The easiest way to find the negative reciprocal is to simply flip the fraction and change the sign (a positive gets changed to a negative and a negative gets changed to a positive). For example, if one line has a slope of 2 then a perpendicular line will have a slope of $-\frac{1}{2}$.

Notice how the signs of the gradient change since one gradient will be positive and one will be negative

Let's look at some examples for perpendicular lines as this is a hard concept for some students.

- If a line has slope 2 , what slope would a perpendicular line have?
slope 2 means the same thing as $\frac{2}{1}$. Flipping the fraction gives $\frac{1}{2}$. Changing the sign means we have a negative, so $-\frac{1}{2}$. Hence a perpendicular line has slope $-\frac{1}{2}$. Let's check if we have done this correctly by checking if the slopes multiply to make -1 :

$$
2\left(-\frac{1}{2}\right)=-1 . \text { Yes, they do, as we expected! }
$$

- If a line has slope $-\frac{2}{3}$, what slope would a perpendicular line have?

Flipping the fraction gives $\frac{3}{2}$. Changing the sign means we have a positive. Hence a perpendicular line has slope $\frac{3}{2}$.
Let's check if we have done this correctly by checking if the slopes multiply to make -1 :

$$
-\frac{2}{3}\left(\frac{3}{2}\right)=-1 . \text { Yes, correct again! }
$$

- If a line has slope $\frac{1}{3}$, what slope would a perpendicular line have?

Flipping the fraction gives $\frac{3}{1}$. Changing the sign means we have a negative so $-\frac{3}{1}$. Hence a perpendicular line has slope $-\frac{3}{1}$ which is just -3 . Let's check if we have done this correctly by checking if the slopes multiply to make -1 :

$$
\frac{1}{3}(-3)=-1 . \text { Yes, correct again! }
$$

How Do We

Find

The Equation of A Line?

The equation of a straight line looks like

$$
\boldsymbol{y}=m \boldsymbol{x}+c
$$

Recall that we use the letter m for gradient/slope and the letter c for y intercept

So, we just need to find the gradient/slope m and y intercept c and then we are done!

Step 1: Find m

There are 4 ways to find this dependent on what we're given

Type 1: If given graph - pick any 2 points on the line, form a triangle \& work out the $\frac{\text { rise }}{\text { run }}$

It doesn't matter which triangle we build (all give the same answer -). Let's use all 2 triangles formed above.

$$
\frac{\text { rise }}{\text { run }}=\frac{1}{2} \quad \text { or } \quad \frac{1}{2} \quad \text { or } \quad \frac{2}{4}=\frac{1}{2}
$$

The slope is positive is the line is going up from left to right (rise) and negative if the line is going down from left to right, so we know that have a positive slope.

$$
y=\frac{1}{2} x+c
$$

Alternative method: we can just write down any 2 points ("nice points" that are whole numbers) from the graph and proceed as in way 2 below

Type 2: If given 2 points - use the following slope formula:

e.g. Find the equation of the line passing through the points $(-1,3)$ and $(2,4)$

$$
m=\frac{4-3}{2--1}=\frac{1}{3} \quad \text { or } \quad m=\frac{3-4}{-1-2}=\frac{-1}{-3}=\frac{1}{3}
$$

$$
y=\frac{1}{3} x+c
$$

Type 3: If given a line that parallel to - locate slope and use same slope

e.g. 1 Find the line parallel to $y=2 x-3$
$y=2 x-3$ has gradient 2 . Since parallel means the same gradient, we use the same gradient 2

$$
y=2 x+c
$$

e.g. 2 Find the line parallel to $6 x+2 y=5$

we must first re-arrange using algebra to get into the form $y=m x+c$. We do this in order to spot the gradient

$$
\begin{aligned}
2 y & =-6 x+5 \\
y & =\frac{-6 x+5}{2} \\
y & =-3 x+\frac{5}{2}
\end{aligned}
$$

$y=-3 x+\frac{5}{2}$ has gradient -3 . Since parallel means the same gradient, we use the same gradient -3.

$$
y=-3 x+c
$$

Type 4: If given a line perpendicular to - locate slope and use negative reciprocal slope (negative reciprocal means we flip the fraction and change the sign)
e.g. 1 Find the line perpendicular to $y=2 x-3$
$y=2 x-3$ has gradient 2 . Since perpendicular means the negative reciprocal gradient

$$
y=-\frac{1}{2} x+c
$$

e.g. 2 Find the line perpendicular to $4 x+2 y=6$
we must first re-arrange using algebra to get into the form $y=m x+c$. We do this in order to spot the gradient.

$$
\begin{aligned}
2 y & =-6 x+5 \\
y & =\frac{-6 x+5}{2} \\
y & =-3 x+\frac{5}{2}
\end{aligned}
$$

$y=-3 x+\frac{5}{2}$ has gradient -3 . Since perpendicular means the negative reciprocal gradient, we use the negative reciprocal

$$
y=\frac{1}{3} x+c
$$

Note:
If given 2 points that the line passes through, choose either point to plug in. Both will give the same answer for c.

How Do We Find x
 and y lintercepts When
 Given An Equation In Any Form?

The x intercept is the point where the graph crosses the x axis and the y intercept is the point where the graph crosses the y axis

x intercept	y int ercept		
To find this point we set $y=0$ (i.e. replace y with 0) and solve for x.	To find this point we set $x=0$ (i.e. replace x with 0) and solve for y.		
The coordinate will be $(x, 0)$ where x is			
the value found.			The coordinate will be $(0, y)$ where y is
:---			
the value found.			

© mymathscloud

How Do We Find Midpoints?

Midpoint between 2 points $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right) \Rightarrow$ midpoint $=\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1+} y_{2}}{2}\right)$
In English this formula just says:
Add the x coordinates and divide by 2 (i.e. find the average) and add the y coordinates and divide by 2 (i.e. find the average)

Examples To Try

Find the midpoint between the two points
i. $(1,4)$ and $(2,8)$
ii. $(-2,3)$ and $(4,-1)$

Harder Examples To Try

iii. The midpoint of two points $(a, 6)$ and $(7,10)$ is $(3,9)$. Find the value of a
iv. The midpoint joining the two points $(5,9)$ and (a, b) is $(8,1)$. Find the values of a and b

How Do We Find Distances?

There are 2 ways to find the distance:
Way 1: Build A Triangle - We find the x and y distances between the coordinates and use Pythagoras to find the hypotenuse length which is the distance between the points

Way 2: Formula - Distance between 2 points $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right) \Longrightarrow$ Distance $=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}$
Example: Find the distance between the 2 points $(-1,3)$ and $(2,4)$ Let's colour code as $(-1,3),(2,4)$

Way 1: Build a triangle

Way 2: Distance Formula

$$
\begin{gathered}
=\sqrt{(2--1)^{2}+(4-3)^{2}} \\
=\sqrt{3^{2}+1^{2}} \\
=\sqrt{10}
\end{gathered}
$$

Distance $=\sqrt{3^{2}+1^{2}}=\sqrt{10}$

Examples To Try

Find the distance between the two points
i. $(2,3)$ and $(3,6)$
ii. $(2,5)$ and $(-1,3)$
iii. The distance between two points $(a, 3)$ and $(5,7)$ is 5 . Find the value(s) of a

A triangle has vertices P, Q and R
The coordinates of P are $(-3,-6)$
The coordinates of Q are $(1,4)$
The coordinates of R are $(5,-2)$
M is the midpoint of $P Q$
N is the midpoint of $Q R$
Prove that MN is parallel to PR

The coordinates of three points are $\mathrm{A}(-4,-1) \mathrm{B}(8,9)$ and $\mathrm{C}(k, 7)$. M is the midpoint of $A B$ and $M C$ is perpendicular to $A B$. Find the value of k.

Harder Exanples Of

Each Type

Find the equations of the following 3 lines

A is the point $(0,1)$. B is the point $(10,6)$
The equation of the straight line through A and B is $y=\frac{1}{2} x+1$
i. Write down an equation of another straight line that is parallel to $y=\frac{1}{2} x+1$
ii. Write down an equation of another straight line which passes through the point $(0,1)$
iii. Find the equation of another straight line which is parallel to $y=\frac{1}{2} x+1$ and passes through the point $(2,5)$
iv. Find the equation of the line perpendicular to $A B$ passing through B

The diagram shows three points $A(1,-5), B(2,-1)$ and $C(0,5)$ The line L is parallel to $A B$ and passes through C. Find the equation of the line L.

Find an equation of the line joining $A(7,4)$ and $B(2,0)$, giving your answer in the form $a x+b y+c=0$, where

Level 3: Gold

Here are the equations of four straight lines
Line A: $y=2 x+4$
Line B: $2 y=x+4$
Line C: $2 x+2 y=4$
Line D: $2 x-y=4$
Two of these lines are parallel. Which 2 lines?

P has coordinates $(-9,7) . Q$ has coordinates $(11,12)$. M is the midpoint of the line segment $P Q$. Line L is perpendicular to the line segment $P Q$. L passes through M . Find an equation for L .
$A B C D$ is a kite with $A B=A D$ and $C B=C D . B$ is the point with the coordinates $(10,19)$. D is the point with the coordinates $(2,7)$. Find the equation of the line $A C$ in the form $p x+q y=r$, where p, q and r are integers Hint: The diagonals of a kite and perpendicular. We need to find equation of line perpendicular to BD passing through midpoint of BD.

A has coordinates ($-3,0$)
B has coordinates $(1,6)$
C has coordinates $(5,2)$
Find the equation of the line passing through C that is perpendicular to AB . Give your equation in the form $a x+b y=c$ where a, b and c are integers

The point P has coordinates $(3,4)$
The point Q has coordinates (a, b)
A line perpendicular to PQ is given by the equation $3 x+2 y=7$
Find an expression of b in terms of a
$A B C D$ is a square. P and D are points on the y axis. A is a point on the x axis. $P A B$ is a straight line. The equation of the line that passes through the points A and D is $y=-2 x+6$ Find the length of $P D$.

The line $y=m x+c$ is parallel to the line $y=2 x+8$. Find the value of m and the value of c

The distance AB is 7 units.
i. Write down the equation of the line through B which is parallel to $y=2 x+3$ ii. Find the coordinates of the point C where this line crosses the x axis

Level 4: Diamond

$A B C D$ is a rectangle. A is the point $(0,1)$. C is the point $(0,6)$. The equation of the straight line through A and B is $y=$ $2 x+1$

- Find the equation of the straight line through D and C
- Find the equation of the straight line through B and C

ABCD is a rhombus. The coordinates of A are $(5,11)$. The equation of the diagonal DB is $y=\frac{1}{2} x+6$. Find the equation of the diagonal AC.

The figure above shows a right-angled triangle LMN. The points L and M have coordinates $(-1,2)$ and $(7,-4)$ respectively i. Find an equation for the straight line passing through the points L and M. Give your answer in the form $a x+b y+c=0$, where a, b and c are integers
Given that the coordinates of point N are (16, p), where p is a constant, and angle $\mathrm{LMN}=90^{\circ}$
ii. find the value of p
iii. Given that there is a point K such that the points L, M, N, and K form a rectangle, find the y coordinate of K.

Triangle HJK is isosceles with $\mathrm{HJ}=\mathrm{HK}$ and $\mathrm{JK}=\sqrt{80}$
H is the point with coordinates $(-4,1)$
J is the point with coordinates $(j, 15)$ where $j<0$
K is the point with coordinates $(6, k)$
M is the midpoint of J
The gradient of HM is 2
Find the value of j and the value of k

How Do We Find Where 2 Lines
 Intersect?

If Given Graph

The diagram shows two straight lines.
The equation of the lines are

$$
y=x-1 \text { and } 2 x+3 y=12
$$

Write down the solution of the simultaneous equations

$$
\begin{gathered}
y=x-1 \\
2 x+3 y=12
\end{gathered}
$$

The solution is just the point where the graphs intersect!

$$
\begin{aligned}
& x=3 \\
& y=2
\end{aligned}
$$

© mymathscloud

If Given Equations

The equation of two straight lines are

$$
\begin{aligned}
& y=2 x+7 \\
& y=3 x+4
\end{aligned}
$$

Find the coordinates where these lines intersect

We just solve simultaneously! Solving simultaneously finds the intersection point.
You can either use elimination or substitution. These methods won't be covered here (see the relevant notes and worksheet for this topic)

Finding the intersection points (A and B) is just solving simultaneously

$$
y=2 x+7 \text { and } y=3 x+4
$$

Both equations are already re-arranged for y, so setting them equal

$$
2 x+7=3 x+4
$$

Now solving for x

$$
x=3
$$

Subbing into one of the original equations

$$
\begin{gathered}
y=2 x+7 \\
y=2(3)+7 \\
y=13
\end{gathered}
$$

The graphs intersect at $(3,13)$

$$
x=3, y=13
$$

Examples To Try

The equation of two straight lines are

$$
\begin{gathered}
y=2 x-3 \\
y=x-6
\end{gathered}
$$

Find the coordinates where they intersect

The equation of two straight lines are

$$
\begin{aligned}
& y=3 x+4 \\
& 2 y=6 x+4
\end{aligned}
$$

Find the coordinates where they intersect

The equation of two straight lines are

$$
\begin{array}{r}
8 x-3 y=-2 \\
y=3-2 x
\end{array}
$$

Find the coordinates where they intersect

The equation of two straight lines are

$$
\begin{gathered}
3 x+2 y=4 \\
4 x+5 y=17
\end{gathered}
$$

Find the coordinates where they intersect

Harder Examples To Try

A and B are lines
Line A has equation $2 y=3 x+8$
Line B goes through the points $(-1,2)$ and $(2,8)$
Do lines A and B intersect?
The straight line L_{1} passes through the points with coordinates $(4,6)$ and $(12,2)$
The straight line L_{2} passes through the origin and has gradient -3
The lines L_{1} and L_{2} intersect at point P . Find the coordinates of P

The points $\mathrm{A}(1,7), \mathrm{B}(20,7)$ and $\mathrm{C}(p, q)$ form the vertices of a triangle ABC as show in the diagram. The point $\mathrm{D}(8,2)$ is the midpoint of $A C$.
i. Find the values of p and q

The line l_{1} which passes through D and is perpendicular to AC , intersects AB at E
i. Find the equation for l, in the form $a x+b y+c=0$, where a, b and c are integers
ii. Find the exact x coordinate of E

© mymathscloud

Areas

If given coordinates, we can find the areas of shapes

Examples To Try

Find an equation of the line joining $A(7,4)$ and $B(2,0)$, giving your answer in the form $a x+b y+c=0$, where a, b and c are integers.
i. Find the length of $A B$, leaving your answer in surd form

The point C has coordinates $(2, t)$, where $t>0$, and $A C=A B$.
ii. Find the value of t
iii. Find the area of triangle $A B C$

The straight line L has equation $3 x+2 y=17$. The point A has coordinates $(0,2)$. The straight line M is perpendicular to L and passes through A. Line L crosses the y axis at the point B. Lines L and M intersect at the point C. Work out the area of triangle $A B C$

The line l_{1} passes through the points $\mathrm{P}(-1,2)$ and $\mathrm{Q}(11,8)$
i. Find an equation for l_{1} in the form $y=m x+c$, where m and c are constants. The line l_{2} passes through the point $\mathrm{R}(10,0)$ and is perpendicular to l_{1}. The lines l_{1} and l_{2} intersect at the point S.
i. Calculate the coordinates of S.
ii. Hence, or otherwise, find the exact area of triangle PQR

Area Hack

Did you know we can easily find the area of any n sided shape, just by knowing its coordinates? There is a VERY USEFUL formula that can find the area of ANY shape if you JUST have the coordinates. This formula is called the shoelace formula (aka shoelace algorithm or shoelace method or Gauss's area formula). It is a algorithm to determine the area of a simple polygon (a polygon that does not intersect itself and has no holes). It is called the shoelace formula because of the constant cross-multiplying for the coordinates making up the polygon, like threading shoelaces.

Imagine how cool it would be to find the area of any difficult looking shape if you have its coordinates. Well now you can $:$

Step 1: Plots the coordinates
Step 2: Start at ANY coordinate
Step 3: Go anti-clockwise around the shape and write down all vertices as a vertical list. Make sure you "close the shape" at the end by re-writing the first coordinate you started with.
Step 4: Cross multiply corresponding diagonal coordinates and add. First going from left to right and then right to left

Step 5: Subtract these two answers and then divide by 2

$$
\frac{\backslash-/}{2}
$$

For example, we can find the area of this in around 1 minute.

Let's pick a point to start at: $(2,1.5)$. We go anti-clockwise.
$(2,1.5)$

Let's colour code to explain the method.

Examples To Try

The straight line l_{1} has equation $2 y=3 x+7$
The line l_{1} crosses the y-axis at the point A as shown
i. State the gradient of l_{1}
ii. Write down the coordinates of the point A .

Another straight line l_{2} intersects l_{1} at the point $\mathrm{B}(1,5)$ and crosses the x-axis at the point C , as shown.

Given that angle $A B C=90^{\circ}$
i. Find an equation in the form $a x+b y+c=0$, where a, b and c are integers.
ii. The rectangle $A B C D$ shown shaded has vertices A, B, C and D. Find the exact area of rectangle ABCD

The line l_{1} has equation $4 y+3=2 x$. The point $A(p, 4)$ lies on l_{1}
i. Find the value of the constant p
The line l_{2} passes through the point $C(2,4)$ and is perpendicular to l_{1}
ii. Find an equation for l_{2} giving your answer in the form $\mathrm{ax}+\mathrm{by}+\mathrm{c}=0$, where a, b and c are integers

The line l_{1} and the line l_{2} intersect at the point D
iii. Find the coordinates of the point D
iv. Show that the length of $C D$ is $\frac{3}{2} \sqrt{5}$
A point B lies on l_{1} and the length of $A B=\sqrt{80}$
The point E lies on l_{2} such that the length of the line $C D E=3$ times the length of $C D$
v. Find the area of the quadrilateral ACBE

The points $P(0,2)$ and $Q(3,7)$ lie on the line l_{1}, as shown below
The line l_{2} is perpendicular to l_{1}, passes through Q and crosses the x-axis at the point R, as shown.

i. Find an equation for l_{2}, giving your answer in the form $a x+b y+c=0$, where a, b and c are integers,
ii. the exact coordinates of R
iii. the exact area of the quadrilateral $O R Q P$, where O is the origin

